ANOTHER LOOK AT THE DIFFERENTIAL OPERATORS ON QUANTUM MATRIX SPACES AND ITS APPLICATIONS Dedicated to Professor Kiyosato Okamoto on the occasion of sixtieth birthday

نویسنده

  • Masato WAKAYAMA
چکیده

The present paper gives a new view point for the di erential operators with respect to the coordinates of the quantum matrix space. A special emphasis is put on an inductive construction of these di erential operators from the q-di erence operators de ned on each columns (resp. rows). This idea for understanding our operators provides us with two important applications: (1) a construction of the q-oscillator representations of the quantized enveloping algebra U q (sp 2m ) of symplectic Lie algebra sp 2m and an explicit description of their tensor powers; (2) a new de nition of a quantum analogue of hypergeometric equations of many variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CONVENIENT CATEGORY FOR DIRECTED HOMOTOPY Dedicated to Walter Tholen at the occasion of his sixtieth birthday

We propose a convenient category for directed homotopy consisting of “directed” topological spaces generated by “directed” cubes. Its main advantage is that, like the category of topological spaces generated by simplices suggested by J. H. Smith, it is locally presentable.

متن کامل

Dual Pairs in Quantum

[UW] T. Umeda and M. Wakayama, Another look at the dierential operators on quantum matrix spaces and its applications, in preparation.

متن کامل

Application of measures of noncompactness to infinite system of linear equations in sequence spaces

G. Darbo [Rend. Sem. Math. Univ. Padova, 24 (1955) 84--92] used the measure of noncompactness to investigate operators whose properties can be characterized as being intermediate between those of contraction and compact operators. In this paper, we apply the Darbo's fixed point theorem for solving infinite system of linear equations in some sequence spaces.  

متن کامل

ON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS

In this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the Bag and Samanta’s operator norm on Felbin’s-type fuzzy normed spaces. In particular, the completeness of this space is studied. By some counterexamples, it is shown that the inverse mapping theorem and the Banach-Steinhaus’s theorem, are not valid for this fuzzy setting. Also...

متن کامل

Bilinear Fourier integral operator and its boundedness

We consider the bilinear Fourier integral operatorS(f, g)(x) =ZRdZRdei1(x,)ei2(x,)(x, , ) ˆ f()ˆg()d d,on modulation spaces. Our aim is to indicate this operator is well defined onS(Rd) and shall show the relationship between the bilinear operator and BFIO onmodulation spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995